[计算机软件及应用]dsp第6章II课件

PPT
  • 阅读 68 次
  • 下载 0 次
  • 页数 86 页
  • 大小 2.705 MB
  • 2022-11-12 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档30.00 元 加入VIP免费下载
此文档由【小橙橙】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
[计算机软件及应用]dsp第6章II课件
可在后台配置第一页与第二页中间广告代码
[计算机软件及应用]dsp第6章II课件
可在后台配置第二页与第三页中间广告代码
[计算机软件及应用]dsp第6章II课件
可在后台配置第三页与第四页中间广告代码
[计算机软件及应用]dsp第6章II课件
[计算机软件及应用]dsp第6章II课件
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 86
  • 收藏
  • 违规举报
  • © 版权认领
下载文档30.00 元 加入VIP免费下载
文本内容

【文档说明】[计算机软件及应用]dsp第6章II课件.ppt,共(86)页,2.705 MB,由小橙橙上传

转载请保留链接:https://www.ichengzhen.cn/view-2119.html

以下为本文档部分文字说明:

1利用模拟滤波器设计IIR数字滤波器设计过程:IIR数字滤波器设计设计技术成熟有相当简便的公式和图表模拟滤波器)(sHaAF由此设计数字滤波器)(zHDF要求DF特性模仿AF的特性实际上是个映射问题Mapping离散时间域(Z平面)转换关系连续时间域(S平面)2

转换后的H(z)稳定且满足技术要求,对转换关系提出两点要求:(1)因果稳定的模拟滤波器转换成数字滤波器,仍是因果稳定的(2)数字滤波器的频率响应模仿模拟滤波器的频响,s平面的虚轴映射z平面的单位圆,相应的频率之间成线性关系。Re(z)jIm(z)0

z平面1z1z2ххj0S平面S1xS2xхх3两种常用的映射变换方法一、脉冲响应不变法二、4利用模拟滤波器理论设计数字滤波器,也就是使数字滤波器能模仿模拟滤波的特性,这种模仿可从不同的角度出发。脉冲响应不变法是

从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h(n)正好等于模拟滤波器的冲激响应ha(t)的采样值,即h(n)=ha(nT),T为采样周期。如以Ha(s)及H(z)分别表示ha(t)的拉氏变换及h(

n)的Z变换,即Ha(s)=LT[ha(t)],H(z)=ZT[h(n)]Ha(s)→LT-1[Ha(s)]→ha(t)→时域采样→h(n)→ZT[h(n)]→H(z)所以说脉冲响应不变法是一种时域上的变换方法6.3用脉冲响应不变法设计5计算H(Z):脉冲响应不变法

特别适用于用部分分式表达传递函数,模拟滤波器的传递函数若只有单阶极点,且分母的阶数高于分子阶数N>M,则可表达为部分分式形式;其拉氏反变换为:单位阶跃对ha(t)采样得到数字滤波器的单位脉冲响应序列=−=NiiissAsHa1)(==NitsiatutueAthi1)(),()(===

==NiNinTsinTsinueAnueAnThanhii11)()()()()(6再对h(n)取Z变换,得到数字滤波器的传递函数:第二个求和为等比级数之和,要收敛的话,===−=−==01011)()(nNinn

TsNiinnTsizeAzeAzHii→−−−−kTskTszezeii111)(1,0)(1==−kkTszei所以有=−−=NiTsizeAzHi111)(必有7比较看到:S平面上的极点S=Si变换到Z平面上是极点,而Ha(s)与H(Z)中部分分式所对应的系数不

变,但要注意,这种Ha(s)到H(Z)的对应变换关系,只有将Ha(s)表达为部分分式形式才成立。稳定性:如果模拟滤波器是稳定的,则所有极点Si都在S左半平面,即Re[si]<0,那么变换后H(Z)的极点也都在单位圆以内,即,因此数字滤波器保持稳定

。Tsiez=Tsie1)(=TsRTsieiee8根据理想采样序列拉氏变换与模拟信号拉氏变换的关系②①理想采样的拉氏变换与模拟信号的拉氏变换之间的关系。②理想采样的拉氏变换与采样序列的Z变换之间存在的S平面与Z平面的映射关系。−=+=maamTjsHTsH21)(ˆ

)(ˆtah)(sHa)(tha)(ˆtah)(sHa)(sHa)(nh)(zH9−=−−=−−−−−==−=−=nnsTnststnenThdtenTtthdtenTtthsH)()()(])()([)(ˆaaaa

−=−=nnsTenh)(−=−=nnznhzH)()(sTez=s平面与z平面的映射关系10以上表明,采用脉冲响应不变法将模拟滤波器变换为数字滤波器时,它所完成的S平面到Z平面的变换,正是以前所讨论的拉氏变

换到Z变换的标准变换关系,即首先对Ha(s)作周期延拓,然后再经过的映射关系映射到Z平面上。STez=11映射关系:S平面上每一条宽为的横带部分,都将重叠地映射到Z平面的整个平面上:每一横带的左半部分映射到Z平面单位圆以内,每一横带的右半部分映射到

Z平面单位圆以外,轴映射到单位圆上,轴上每一段都对应于绕单位圆一周。STez=T2jjT2+==jsrezj,令TerT==,则12j0T−T3T3−T)Im(zj)Re(z0S平面Z平面~:−13应指出,Z=esT的映射关系反映的是Ha(s)的周期延

拓与H(Z)的关系,而不是Ha(s)本身与H(Z)的关系,因此,使用脉冲响应不变法时,从Ha(s)到H(z)并没有一个由S平面到Z平面的一一对应的简单代数映射关系,即没有一个S=f(z)代数关系式。混迭:由②式,还可看到,数字滤波器的频响并不是简单的重现模拟滤波器

的频响,而是模拟滤波器频响的周期延拓:③周期为()+=−=TmjjHTeHamj21Ts2=14正如第一章的采样定律中所讨论的,如果模拟滤波器的频响带限于折叠频率ΩS/2以内,即20)(sajH=15这时数字滤波器的频响才能不失真地重现模拟滤波器的频响(

存在于折叠频率ΩS/2以内)但任何一个实际的模拟滤波器,其频响都不可能是真正带限的,因此不可避免地存在频谱的交叠,即混淆,如图,这时,数字滤波器的频响将不同于原模拟滤波器的频响而带有一定的失真。模拟滤波器频响在折叠频率以上衰减越大,

失真则越小,这时,采用脉冲响应不变法设计的数字滤波器才能得到良好的效果。=)(1)(TjHTeHaj16脉冲响应不变法中的频响混淆)(jeH0T0T−)(jHa−17例将一个具有如下传递函数的模拟滤波器数字化。解:3111)3)(1(2)(+−+=++=sssssHT

TezezzH3111111)(−−−−−−−=243131)(1)(−−−−−−−−++−−=zeeezeezTTTTT18模拟滤波器的频率响应为:+−=++===4)3(2)3)(1(2)()(2jjjsHjHajs19数字

滤波器的频率响应为:显然与采样间隔T有关T越小,衰减越大,混叠越小,当fs=24Hz,混叠可忽略不计,为什么混迭呢?2433)(1)()()(jTjTTjTTezjeeeeeeeezHeHj−−−−−−−−=++−−==

)(jeH2021实际应用中的问题:(1)=)(1)(TjHTeHaj实用公式:=−−=NiTsizeTAzHi111)(此时,==)()()()(TjHeHnThTnhaj

a22(2)复数乘法器的问题:kA1−zTske23若AF的二阶基本节的形式为1121211j,)(+++极点为-ss则相应的DF的二阶节的形式为T1TTTezTezTez111221111cos21cos1−−−−−−+−-24若AF的二阶基本节的形式为11212

11j,)(++极点为-s则相应的DF的二阶节的形式为T1TTTezTezTez111221111cos21sin−−−−−−+−25脉冲响应不变法的优缺点优点:◼1、频率变换是线性关系;w=T,模数字滤波器可以

很好重现模拟滤波器的频响特性;◼2、数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应,时域特性逼近好;◼3、如果Ha(s)是稳定的,即其极点在S左半平面,映射后得到的H(Z)也是稳定的。26缺点:1.有频谱混迭失真现象;(S平面到Z平面有多值映射关系)因此只

能用于带限的频响特性,如衰减特性很好的低通或带通,而高频衰减越大,频响的混淆效应越小,至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中2.由于频谱混迭,使应用受到限制。(T失真,但运算量,实现困难)276.4脉冲响应不变法的主要缺点是频谱交叠产生的混淆,这

是从S平面到Z平面的标准变换z=esT的多值对应关系导致的,为了克服这一缺点,第一步:将整个S平面压缩到S1平面的一条横带里;第二步:通过标准变换关系将此横带变换到整个Z平面上去。由此建立S平面与Z平面一一对应的单值关系,消除多值性,也就消除了混淆现象。28s平面s1平面z平面

双线性变换法的映射关系29双线性变换法消除频谱混迭的原理◼非线性压缩:(S平面→S1平面映射)◼双线性变换法用正切变换实现非线性频率压缩,设Ha(s),s=jΩ,经过非线性频率压缩后用Ha(s1),s1=jΩ1表示。则:◼上式表明:当Ω1从π/T经过0变化到-π/T时

,Ω则由∞经过0变化到-∞,这样实现了s平面上整个虚轴完全压缩到s1平面上虚轴的±π/T之间的转换。121tan()2TT=0/T-/T1T:时域采样间隔;30将这一关系解析扩展至整个S平面,则得S平面到

S1再将S1平面通过标准变换关系映射到Z平面,TsTseecTscs1111)2(th1−−+−==−−+−=zzTsTsez1=31考虑z=ejω,)2/(2tgT=()===+−=−−jjTjTeeTsjj)2(tg22cos)2/s

in(211232最后得S平面与Z双线性换法的主要优点是S平面与Z平面一一单值对应,S平面的虚轴(整个jΩ)对应于Z平面单位圆的一周,S平面的Ω=0处对应于Z平面的ω=0处,对应即数字滤波器的频率响应终止于折迭频率处,所以双线性

变换不存在混迭效应。−−+−=zzTssTsTz)/()/(−+=通常取C=2/T,33现在我们看看,这一变换是否符合我们一开始提出的由模拟滤波器设计数字滤波器时,从S平面到Z平面映射变换的二个基本要求:①当时,(1)式,得:jez=+==+−=−−jjtgTee

Tsjj22112对单位圆,即S平面的虚轴映射到Z平面正好是单位圆。0=34②代入(2)式+=js2222221221||,221221+−++=−−+

+=TTTTzTjTTjTz1||,0;1||,0zz时时35即s左半平面映射在单位圆内,s右半平面映射在单位圆外,因此稳定的模拟滤波器通过双线性变换后,所得到的数字滤波器也是稳定的。如图1。图双线性变换的频率非线性关系361)与脉冲响应不变法相比,双线性变换的主要

优点:S平面与Z平面是单值的一一对应关系(靠频率的严重非线性关系得到的),即整个jΩ轴单值的对应于单位圆一周,关系式为:可见,ω和Ω为非线性关系。=22tgT37说明:s平面上Ω与z平面的ω成非线性正切关系,当ω增加时,Ω

增加得很快,当ω趋于π时,Ω趋于∞,由于这种非线性关系,消除了频率混叠现象。代价:影响数字滤波器频响逼真模拟滤波器的频响的逼真度,存在幅度失真和相位失真。382)Ω与ω成非线性关系,会导致:a.数字滤波器的幅频响应相对于模拟滤波器的幅频响应有畸变,(使数字滤

波器与模拟滤波器在响应与频率的对应关系上发生畸变)。例如,一个模拟微分器,它的幅度与频率是直线关系,但通过双线性变换后,bktgjHeHbkjHtgj+==+==2)()()(239b.线性相位模拟滤波器经双线性变换后,得到的数字滤波器为非线性相位。c.要求模拟滤

波器的幅频响应必须是分段恒定的,故双线性变换只能用于设计低通、高通、带通、带阻等选频滤波器4041虽然双线性变换有这样的缺点,但它目前仍是使用得最普遍、最有成效的一种设计工具。这是因为大多数滤波器都具有分段常数的频响特性,如低通、高通、带通和带阻等,它们在通带内要求逼近一个衰减为零

的常数特性,在阻带部分要求逼近一个衰减为∞的常数特性,这种特性的滤波器通过双线性变换后,虽然频率发生了非线性变化,但其幅频特性仍保持分段常数的特性。42例如,一个考尔型的模拟滤波器Ha(s),双线性变换后,得到的H(z)在通带与阻带内都仍保

持与原模拟滤波器相同的等起伏特性,只是通带截止频率、过渡带的边缘频率,以及起伏的峰点、谷点频率等临界频率点发生了非线性变化,即畸变。这种频率点的畸变可以通过预畸来加以校正。43五、双线性变换法的预畸变◼对边缘临界频率点产生的畸变,可通过频率的预畸变加以校正。◼例

:数字低通滤波器的两个截止频率:ωp和ωs,如果按照线性变换所对应的模拟滤波器的截止频率分别为:◼再利用非线性的频率变换公式,得到的数字滤波器的截止频率就不等于原来的频率。◼解决方法:数字频率转换成模拟频率时,先进行预畸变的处理:Ωp=ωp/TΩs=ωs/T211

21tan2jjejTeT−−−=+=44双线性变换时频率的预畸45计算H(Z)双线性变换比脉冲响应法的设计计算更直接和简单。由于s与z之间的简单代数关系,所以从模拟传递函数可直接通过代数置换

得到数字滤波器的传递函数。+−==−−+−=−−11112112)()(11zzTHsHzHazzTsa===22)()(22tgTjHjHeHatgTaj置换过程:频响:46这些都比脉冲响应不变法的部分分式分解便捷得多

,一般,当着眼于滤波器的时域瞬态响应时,采用脉冲响应不变法较好,而其他情况下,对于IIR的设计,大多采用双线性变换。47对于采样间隔T的选择:Ts脉冲响应不变法:双线性变换法:T可任意取。48例1设采样周期,设计一个三阶

巴特沃兹LP滤波器,其3dB截止频率fc=1khz。分别用脉冲响应不变法和双线性变换法求解。解:a.脉冲响应不变法由于脉冲响不变法的频率关系是线性的,所以可直接按Ωc=2πfc设计Ha(s)。根据上节的讨论,以截止频率Ωc

归一化的三阶巴特沃兹滤波器的传递函数为:以代替其归一化频率,得:322211)(ssssHa+++=32)/()/(2)/(211)(cccassssH+++=cs/)4(250khzfsTs=

=49为进行脉冲响应不变法变换,计算Ha(S)分母多项式的根,将上式写成部分分式结构:对照前面学过的脉冲响应不变法中的部分分式形式有将上式部分系数代入数字滤波器的传递函数:2/)31(3/2/)31(3/)(6/6/jcsecjcseccscsHajj+

+−+−+−++=−6/2113/;,jccecAsA−=−==2/)31(,3/;2/)31(36/32jsecAjscjc+−=−=−−=−=−−=NiTSiZeAZ

Hi111)(50并将代入,得:合并上式后两项,并将代入,计算得:12/)31(6/12/)31(6/11)3/(1)3/(1/)(−+−−−−−−−−−+−−+−=ZeeTZeeTZeTZHjjcjjcCccc

5.02==Tfcc+−+−+−=−−−−21112079.01905.015541.0571.12079.01571.11)(ZZZZTZHTcc/=51可见

,H(Z)与采样周期T有关,T越小,H(Z)的相对增益越大,这是不希望的。为此,实际应用脉冲响应不变法时稍作一点修改,即求出H(Z)后,再乘以因子T,使H(Z)只与fc/fs有关,即只与fc和fs的相对值wc有关,而与采样频率fs无直接

关系。例如,的数字滤波器具有相同的传递函数,这一结论适合于所有的数字滤波器设计。21112079.01905.015541.0571.12079.01571.1)(−−−−+−+−+−=zzzzZHKHzfKHzf

cs10,40==KHzfKHzfcs1,4==52b.双线性变换法(一)首先确定数字域临界频率(二)根据频率的非线性关系,确定预畸的模拟滤波器临界频率(三)以s/Ωc代入归一化的三阶巴特沃模拟器传递函数并将Ωc=2/T代入上式。(四)将双

线性变换关系代入,求H(Z)。5.02==TfccTtgTcc222==32)/()/(2)/(211)(cccassssH+++=53311211111121111211211)()(11+

−++−++−+==−−−−−−+−=−−zzzzzzsHZHzzTsa()()()()()()()()()()()()()()()()()()()()()()()()()()()2311123121111211313

11131313111113131311212113131312111312122122211111141111111211111211211−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−++=−++++=+−++−+−+++++=−++−+

++=−+−+++−+++=−++−++−+++=zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz54图1为两种设计方法所得到的频响,对于双线性变换法,由于频率的非线性变换,使截止区的衰减越来越快,最后在折叠频率处形成一个三阶传输零点,这个三阶零点正是模拟滤波器在处的三阶

传输零点通过映射形成的。因此,双线性变换法使过渡带变窄,对频率的选择性改善,而脉冲响应不变法存在混淆,且没有传输零点。脉冲响应不变法双线性变换法()=−=,1Z=55566.5数字高通、带通和带阻滤波器的设计57设计高通、带通、带阻等数字滤波器的两种方法:

①先设计一个相应的高通、带通或带阻模拟滤波器,然后通过脉冲响应不变法或双线性变换法转换为数字滤波器。模拟原型模拟高通、带通、带阻数字高通、带通、带阻设计方法同上面讨论的低通滤波器的设计。即确定转换为相应的高通、带通、带阻模拟滤波器的设计Ha(s)H(Z)kk

58②直接利用模拟滤波器的低通原型,通过一定的频率变换关系,一步完成各种数字滤波器的设计。频率变换模拟低通原型数字低通、高通、带通、带阻59模拟AF的频率变换——模拟高通、带通、带阻滤波器的设计模拟高通、带通、带阻滤波器的设计指标模拟低通滤波器的技术指标设计模拟低通滤波器的传输函数相应的模拟高通、

带通、带阻滤波器的传输函数60一、低通到高通的频率变换假设低通传输函数用G(s)表示,s=j,归一化频率用表示;p=j,p称为归一化拉氏复变量。所需类型(例如高通)滤波器的传输函数用H(s)表示,s=j,

归一化频率用表示;令q=j并将q称为归一化拉氏变量,H(q)称为归一化传输函数。61低通到高通的频率变换公式:1=1)()(==jGjH低通G(j)和高通H(j)转换公式:62二、模拟高通滤波器的设计步骤:(1)确定高通滤波器的技术指标:通带下限频

率,阻带上限频率,通带最大衰减,阻带最小衰减'p'sps63(2)确定相应低通滤波器的技术指标。1)LF通带截止频率`1pp=2)LF阻带截止频率`1ss=3)通带最大衰减仍为,阻带最小衰减

仍为。ps64(3)设计归一化低通滤波器G(p);(4)求模拟高通的H(s)。scppGsH==)()(高通的3dB截止频率)1()(sGsH=或者65三、数字高通滤波器的设计步骤:1)确定数字高通滤波器的技术指标;2)将数字

高通滤波器的技术指标转换成相应的模拟高通高通滤波器的技术指标;)2/(2tgT=663)设计模拟高通滤波器(由模拟低通设计模拟高通);4)采用双线性变换将模拟高通滤波器转换成数字高通滤波器;67例:要设计一巴特沃斯高通滤波器,

其通带截止频率(-3dB点处)为3kHz,阻带上限截止频率=2kHz,通带衰减不大于3dB,阻带衰减不小于14dB,抽样频率=10KHz。其幅频特性如图所示sfcfstf68(2)模拟高通的技术指标:令T=1)2/(2cctgT=)2/(2s

tsttgT=dBs14=dBp3=69(3)模拟低通滤波器的技术指标:ccL=1stsL=1dBs14=dBp3=(4)设计归一化的模拟低通滤波器G(p):这里对3dB截止频率归一化cLsLsp==,1pLcL=70令110110,1010−−=

=spsppLsLspk则N可表示为:spspkNlglg−=查表得归一化低通传输函数G(p),去归一化得到G(s)71(5)将模拟低通转换成模拟高通)1()(sGsHa=(6)采用双线性变换将模拟高通滤波器转换成数字高通滤波器;+−==−−+−=−−11

112112)()(11zzTHsHzHazzTsa72变换方法的选用:脉冲响应不变法:对于高通、带阻等都不能直接采用,或只能在加了保护滤波器后才可使用。因此,使用直接频率变换(第二种方法),对脉冲响应不变法要有许多特殊的考虑,它一般应用于第一种方法中。双线性变换法

:下面的讨论均用此方法,实际使用中多数情况也是如此。第二种方法因其简捷便利,所以得到普遍采用。73基于双线性变换法的高通滤波器设计:在模拟滤波器的高通设计中,低通至高通的变换就是S变量的倒置,这一关系同样可应用于双线性变换,只要将变换式中的S代之以1/S,就

可得到数字高通滤波器.即11112−−−+=zzTs74由于倒数关系不改变模拟滤波器的稳定性,因此,也不会影响双线变换后的稳定条件,而且轴仍映射在单位圆上,只是方向颠倒了。即j=−=−+==−−jjctgTeeTseZ

jjj22112,时−=22ctgT如图75映射到即映射到即图1高通变换频率关系这一曲线的形状与双线性变换时的频率非线性关系曲线相对应,只是将坐标倒置,因而通过这一变换后可直接将模拟低通变为数字高通,如图2。−=22ctgT0===

1=z1−=z0=1.01.0076图2高通原型变换77应当明确:所谓高通DF,并不是ω高到,由于数字频域存在折叠频率,对于实数响应的数字滤波器,部分只是的镜象部分,因此有效的数字域仅是,

高通也仅指这一段的高端,即到为止的部分。高通变换的计算步骤和低通变换一样。但在确定模拟原型预畸的临界频率时,应采用,不必加负号,因临界频率只有大小的意义而无正负的意义。=2~由0~由~0===22kkctgT78例:采样设计一个三阶切比雪夫高通DF,其通

过频率(但不必考虑以上的频率分量),通带内损耗不大于1dB。解:首先确定数字域截止频率,则切比雪夫低通原型的模函数为:为N阶切比雪夫多项式,100,10usTkHzfs==kHzf5.2kHzfs52=5.0211==Tf22211

TctgT==()1222/11)(+=NaVjH)(•NV79通带损耗时,N=3时,系统函数为:5089.01101.0=−=3212131319883.0238.14913.

04913.0)(ssssHa+++=dB1=为方便,将和S用T/2归一化,则12~,12/~11TssT===32~~9883.0~238.14913.04913.0)~(ssssHa+++=80于是32132111~2041.06043.0343

2.013311321.0)~()(11−−−−−−−+=+++−+−==−−zzzzzzsHZHzzsa图3三阶切比雪夫高通频响81用MATLAB设计数字滤波器828384脉冲响应不变法双线性变换法85IIR数字滤波器直接

设计法在数字域直接设计IIR滤波器,这种方法适合任一幅度特性的滤波器。1)零极点累试法:2)在频域利用幅度平方误差最小法:3)时域直接设计法:86习题p193◼1、3、5、7、9、10

小橙橙
小橙橙
文档分享,欢迎浏览!
  • 文档 25747
  • 被下载 7
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?