【文档说明】医学课件离心泵CFX流场分析教程.ppt,共(22)页,2.113 MB,由小橙橙上传
转载请保留链接:https://www.ichengzhen.cn/view-256287.html
以下为本文档部分文字说明:
ANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-1April28,2009Inventory#002599I
ntroductionThePurposeofthetutorialistomodelcavitationinacentrifugalpump,whichinvolvestheuseofarotationdomainandthecavitationmodel.Theproblemconsistso
fafivebladecentrifugalpumpoperatingat2160rpm.Theworkingfluidiswaterandflowisassumedtobesteadyandincompressible.Duetorot
ationalperiodicityasinglebladepassagewillbemodeled.Theinitialflow-fieldwillbesolvedwithoutcavitation.Itwillbeturnedonlater.ANSYS,Inc.Proprietary©2009
ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-2April28,2009Inventory
#0025991.StartWorkbenchandsavetheprojectascentrifugalpump.wbpj2.DragCFXintotheProjectSchematicfromtheCompo
nentSystemstoolbox3.StartCFX-PrebydoubleclickingSetup4.WhenCFX-Preopens,importthemeshbyright-clickingonMeshandselectingImportMesh>ICEMCFD5.Bro
wsetopump.cfx56.KeepMeshunitsinm7.ClickOpenWorkbenchANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreser
ved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-3April28,2009Inventory#002599Modifyingthematerialproperties:1.ExpandMate
rialsintheOutlinetree2.Double-clickWater3.OntheMaterialPropertiestabchangeDensityto1000[kg/m3]4.ChangeDynamicViscosityto0.001[kgm^-1s^-1]
underTransportProperties5.ClickOKCreatingWorkingFluidsANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplemen
tWS5:CavitatingCentrifugalPumpWS5-4April28,2009Inventory#002599SettinguptheFluidDomain1.Double-clickonDefaultDomain2.UnderFluidandParticleDe
finitions,deleteFluid1andthencreateanewFluidnamedWaterLiquid3.SetMaterialtoWater4.CreateanothernewFluidnamedWaterVapour5.NexttotheMaterialdro
p-downlist,clickthe“…”icon,thentheImportLibraryDataicon(ontherightoftheform),andselectWaterVapourat25CundertheWaterDataobject–ClickOK6.BackintheMater
ialpanel,selectWaterVapourat25C–ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentri
fugalPumpWS5-5April28,2009Inventory#002599SettinguptheFluidDomain7.SettheReferencePressureto0[Pa]8.SetDomainMotiontoRotating9.SetAngularVelocit
yto2160[revmin^-1]10.SwitchonAlternateRotationModel11.MakesureRotationAxisunderAxisDefinitionissettoGlobalZ11.SwitchtotheFluidModelstab,andse
tthefollowing:12.TurnonHomogeneousModelintheMultiphasesection13.UnderHeatTransfersettheOptiontoIsothermal,withaTemperatureof25C
14.SetTurbulenceOptiontoShearStressTransport15.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplemen
tWS5:CavitatingCentrifugalPumpWS5-6April28,2009Inventory#002599InletBoundaryCondition1.InsertaboundaryconditionnamedInlet2.OntheBasicSettingstab,se
tBoundaryTypetoInlet3.SetLocationtoINLET4.SetFrameTypetoStationary5.SwitchtotheBoundaryDetailstab6.Spe
cifyMassandMomentumwithaNormalSpeedof7.0455[m/s]7.SwitchtotheFluidValuestab8.ForWaterLiquid,settheVolumeFractiontoaValueof19.ForWaterVapour,s
ettheVolumeFractiontoaValueof010.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpW
S5-7April28,2009Inventory#002599OutletBoundaryCondition1.InsetaboundaryconditionnamedOutlet2.OntheBasicSettingst
ab,setBoundaryTypetoOpening3.SetLocationtoOUT4.SetFrameTypetoStationary5.SwitchtotheBoundaryDetailstab6.SpecifyMassandMomentumusin
gEntrainment,andenteraRelativePressureof600,000[Pa]7.EnablethePressureOptionandsetittoOpeningPressure8.SetTurbulenceOptiontoZeroGradient9.Switchtothe
FluidValuestab10.ForWaterLiquid,settheVolumeFractiontoaValueof111.ForWaterVapour,settheVolumeFractiontoaValueof012.ClickOKANSYS,In
c.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-8April28,2009Inventory#002599Perio
dicInterface1.ClicktocreateanInterface,andnameitPeriodic2.SettheInterfaceTypetoFluidFluid3.ForInterfaceS
ide1,settheRegionListtoDOMAININTERFACE1SIDE1andDOMAININTERFACE2SIDE1(usethe“…”iconandtheCtrlkey)4.ForInterfaceSide2,settheRegionListtoDOMAIN
INTERFACE1SIDE2andDOMAININTERFACE2SIDE25.SettheInterfaceModelsoptiontoRotationalPeriodicity6.UnderAxi
sDefinition,selectGlobalZ7.SetMeshConnectionOptionto1:18.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:Cavitat
ingCentrifugalPumpWS5-9April28,2009Inventory#002599WallBoundaryConditions1.InsertaboundaryconditionnamedStationa
ry2.SetittobeaWall,usingtheSTATIONARYlocation3.OntheBoundaryDetailstab,enableaWallVelocityandsetittoCounterRotatingWall4.Clic
kOK5.IntheOutlineTree,right-clickontheDefaultDomainDefaultboundaryandrenameittoMoving–ThedefaultbehaviorfortheMovingboundarycondition
istomovewiththerotatingdomain,sothereisnothingthatneedstobesetANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:Cav
itatingCentrifugalPumpWS5-10April28,2009Inventory#002599Initialization1.Clicktoinitializethesolution2.OntheFluidSetting
sform,setWaterLiquidVolumeFractiontoAutomaticwithValue,andsettheVolumeFractionto13.SetWaterVapourVolumeFractiontoAutomaticwithValue
,andsettheVolumeFractionto04.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentri
fugalPumpWS5-11April28,2009Inventory#002599SolverControl1.DoubleclickSolverControlintheOutlinetree2.
SetTimescaleControltoPhysicaltimescaleAcommonlyusedtimescaleinturbomachineryis1/omega,whereomegaistherotationrateinradianspersecond.Youca
nuseanexpressiontodetermineatimestepfromthis.Inthiscase,2/omegawillbeusedtoachievefasterconvergence.3.Enterth
efollowingexpressioninthePhysicalTimescalebox:1/(pi*2160[min^-1])4.SetResidualTargetto1e-55.OntheAdvancedOptionstab,tur
nonMultiphaseControl,thenturnonVolumeFractionCouplingandsettheOptiontoCoupled6.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Al
lrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-12April28,2009Inventory#002599Out
putControl1.DoubleClickonOutputControlintheOutlinetree2.OntheMonitortab,turnonMonitorOptions3.UnderMonitorPointsandExpressions,
createanewobjectandcallitInletPTotalAbs4.SetOptiontoExpression5.Specifythefollowingexpression:massFlowAve(TotalPressureinStn
Frame)@Inlet6.CreateanewobjectcalledInletPStatic,andsetOptiontoExpression7.Specifythefollowingexpression:areaAve(Pressure)@Inlet8.Cl
ickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-13April28,2009Inventory#002599Solver1.C
loseCFX-PreandswitchtotheWorkbenchProjectwindow2.Savetheproject3.NowdoubleclickonSolutionintheProjectSchematictostart
theSolverManager4.WhentheSolverManageropens,clickStartRun5.Whenthesolutionhascompleted,closetheSolverManagerandreturntotheProject
window6.SavetheprojectANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS
5-14April28,2009Inventory#002599Post-processing1.ViewtheresultsinCFD-PostbydoubleclickingResultsintheProjectSchematic2.In
sertaContourbyclicking3.FortheLocation,click,expandRegionsandthenselectBLADE4.SetVariabletoAbsolutePressurefromtheextendedlist5.SetRan
getoGlobal6.OntheRendertabswitchoffLightingandShowcontourLines7.ClickApplyANSYS,Inc.Proprietary©2009ANSYS,In
c.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-15April28,2009Inventory#002599Post-processing9.InsertanotherContouro
ntheHUBlocation,usingthevariableAbsolutePressurecolouredbyLocalRange.TurnoffLightingandShowContourLines.10.InsertanotherCon
tourontheSHROUDlocation,usingthevariableAbsolutePressurecolouredbyLocalRange.TurnoffLightingandShowCo
ntourLines.TheminimumpressureisabovetheSaturationPressureof2650PaforWaterhere.Inthenextstep,theoutletpressurewillbered
ucedenoughtoinitiateCavitation.ANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentr
ifugalPumpWS5-16April28,2009Inventory#002599AddinganotherAnalysis1.CloseCFD-PostandreturntotheProjectSchematic2.ClickthearrownexttotheAcelland
selectDuplicate–AnewCFXprojectiscreatedasacopyofthefirst3.ChangethenameofthenewSimulationtoCavitation4.UsethearrownexttotheAcelltoRenameitt
oNoCavitation5.SavetheProject6.Double-clickSetupfortheCavitationsimulationtoopenCFX-PreANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.Wo
rkshopSupplementWS5:CavitatingCentrifugalPumpWS5-17April28,2009Inventory#002599PhysicsModifications1.EdittheDefaultDomain2.OntheFluidPairModelstabse
tMassTransfertoCavitation3.SetOptiontoRayleighPlesset4.TurnonSaturationPressure5.SetaSaturationPressureof2650[Pa]6.ClickOK7.EdittheOu
tletBoundaryCondition8.OntheBoundaryDetailstab,settheRelativePressureto300,000[Pa]9.ClickOKMostcavitationsolutionsshouldbeperforme
dbyturningcavitationonandthensuccessivelyloweringthesystempressureoverseveralrunstomoregraduallyinducecavitation.Tospeedupt
hisworkshop,asuddenchangeinpressureisintroduced.Notethatthisapproachmaynotbesuitableformodellingsomeindustrialcases.A
NSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-18April28,2009Inve
ntory#002599PhysicsModifications1.EditSolverControl2.SettheMax.Iterationsto1503.SettheResidualTargetto1e-44.ClickOK5.CloseCFX-Preandsavetheproject6
.IntheProjectSchematic,dragcellA3ontocellB3–Thenon-cavitatingsolutionwillbeusedastheinitialguessfort
hecavitatingsolution7.Double-clickSolutionfortheCavitationsystem–IntheSolverManagernotethattheinitialconditionshavebeenprovidedfromthepr
ojectschematic8.ClickStartRunANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalP
umpWS5-19April28,2009Inventory#002599CavitationSolutionThereisasignificantspikeinresiduals,inpartduetoth
eoutletpressuredifference,butalsoduetothefactthattheabsolutepressureislowenoughtoinducecavitation.1.Whenth
eruncompletes,closetheSolverManagerandreturntotheProjectSchematic2.Savetheproject3.Double-clickResultsfortheCavitationprojecttoopenCFD-
PostANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-20April28,2009Inventor
y#002599Post-processing1.Ifitisnotenabled,turnonvisibilityfortheWireframeandturnoffvisibilityforanyUserLocationsandPlots2.CreateanXYPlaneatZ=0.01[
m]3.ColouritbyAbsolutePressure(thevariableisavailableintheExtendedListbyclicking).UseaGlobalRange–Theminimumabsolutepressureiseq
uivalenttotheSaturationPressurespecifiedearlier,whichisastronghintthatsomecavitationhasoccurred4.ChangetheColourVariabletoWaterVapour.VolumeFraction5
.ChangetheColourMaptoBluetoWhiteANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-21April28
,2009Inventory#002599Post-processing1.TurnoffvisibilityforPlane12.CreateaVolumeusingtheIsovolumemethod3.SettheVariabletoWaterVapour.Volume
Fraction4.SetModetoAboveValue,andenteravalueof0.55.Toview360degreesofthemodel,double-clickDefaultTransform6.UncheckInstancingInfofromDoma
in7.Set#ofcopiesto58.Set#ofPassagesto59.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:Cav
itatingCentrifugalPumpWS5-22April28,2009Inventory#002599Post-processingThemainareaofcavitationexistsbetweenthesuctionsideofthebladeandtheshroudinthi
sgeometry.AsecondaryareaofcavitationisjustbehindtheleadingedgeofthebladeonthepressuresideFurtherstepstotry:1.CalculatetorqueontheBLADEusingthefu
nctioncalculator(hint,usetheextendedregionlisttofindtheBLADE,anduseGlobalZaxis)2.PlotvelocityVectorso
nPlane1,usingthevariableWaterLiquid.VelocityinStn.Frame3.Calculatethemassflowthroughthepump(hint:usethefunction
calculatortoevaluatemassFlowattheOutletregion)4.Usingasimilarmethodtostep2,calculatethedropinTotalPressurefromI
nlettoOutlet5.PlotStreamlines,startingfromtheInletlocation