【文档说明】医学课件离心泵CFX流场分析教程.ppt,共(22)页,2.113 MB,由小橙橙上传
转载请保留链接:https://www.ichengzhen.cn/view-256287.html
以下为本文档部分文字说明:
ANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-1April28,2009Inventory#002599Introdu
ctionThePurposeofthetutorialistomodelcavitationinacentrifugalpump,whichinvolvestheuseofarotationdomainandthecavitationmodel.Thep
roblemconsistsofafivebladecentrifugalpumpoperatingat2160rpm.Theworkingfluidiswaterandflowisassumedtobesteadyandincompressible.Duetorotationalperiodic
ityasinglebladepassagewillbemodeled.Theinitialflow-fieldwillbesolvedwithoutcavitation.Itwillbeturnedonlater.ANSYS,Inc.P
roprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-2April28,2009Inventory#0025991.StartW
orkbenchandsavetheprojectascentrifugalpump.wbpj2.DragCFXintotheProjectSchematicfromtheComponentSystemstoolbox3.
StartCFX-PrebydoubleclickingSetup4.WhenCFX-Preopens,importthemeshbyright-clickingonMeshandselectingIm
portMesh>ICEMCFD5.Browsetopump.cfx56.KeepMeshunitsinm7.ClickOpenWorkbenchANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreser
ved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-3April28,2009Inventory#002599Modifyingthematerialprop
erties:1.ExpandMaterialsintheOutlinetree2.Double-clickWater3.OntheMaterialPropertiestabchangeDensityto1000[kg/m3]4.ChangeDynamicViscosityto0.001[kg
m^-1s^-1]underTransportProperties5.ClickOKCreatingWorkingFluidsANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupple
mentWS5:CavitatingCentrifugalPumpWS5-4April28,2009Inventory#002599SettinguptheFluidDomain1.Double-cli
ckonDefaultDomain2.UnderFluidandParticleDefinitions,deleteFluid1andthencreateanewFluidnamedWaterLiquid3.SetMate
rialtoWater4.CreateanothernewFluidnamedWaterVapour5.NexttotheMaterialdrop-downlist,clickthe“…”icon,thentheImportLibra
ryDataicon(ontherightoftheform),andselectWaterVapourat25CundertheWaterDataobject–ClickOK6.BackintheMaterialpanel,selectWaterVapourat25C–Click
OKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-5April28,2009Inventory#002599Setting
uptheFluidDomain7.SettheReferencePressureto0[Pa]8.SetDomainMotiontoRotating9.SetAngularVelocityto2160[revmin^-
1]10.SwitchonAlternateRotationModel11.MakesureRotationAxisunderAxisDefinitionissettoGlobalZ11.SwitchtotheFluidModelstab,andsetthefollowing:12.Tur
nonHomogeneousModelintheMultiphasesection13.UnderHeatTransfersettheOptiontoIsothermal,withaTemperatu
reof25C14.SetTurbulenceOptiontoShearStressTransport15.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsres
erved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-6April28,2009Inventory#002599InletBoundaryCondition1
.InsertaboundaryconditionnamedInlet2.OntheBasicSettingstab,setBoundaryTypetoInlet3.SetLocationtoINLET4.SetFrameTypetoStationary5.Swi
tchtotheBoundaryDetailstab6.SpecifyMassandMomentumwithaNormalSpeedof7.0455[m/s]7.SwitchtotheFluidValuestab8.ForWaterLiquid,set
theVolumeFractiontoaValueof19.ForWaterVapour,settheVolumeFractiontoaValueof010.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsrese
rved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-7April28,2009Inventory#002599OutletBoundaryCondition1.InsetaboundaryconditionnamedOut
let2.OntheBasicSettingstab,setBoundaryTypetoOpening3.SetLocationtoOUT4.SetFrameTypetoStationary5.SwitchtotheBoundaryDetailstab6.SpecifyMas
sandMomentumusingEntrainment,andenteraRelativePressureof600,000[Pa]7.EnablethePressureOptionandsetittoOpeningPressure8.SetTurbulenceOptiontoZeroGr
adient9.SwitchtotheFluidValuestab10.ForWaterLiquid,settheVolumeFractiontoaValueof111.ForWaterVapour,settheVolumeFractiontoaValueof012.ClickOKA
NSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-8A
pril28,2009Inventory#002599PeriodicInterface1.ClicktocreateanInterface,andnameitPeriodic2.SettheInterfaceTypetoFluidFluid3.ForInterfaceSide1,se
ttheRegionListtoDOMAININTERFACE1SIDE1andDOMAININTERFACE2SIDE1(usethe“…”iconandtheCtrlkey)4.ForInterfaceSide2,
settheRegionListtoDOMAININTERFACE1SIDE2andDOMAININTERFACE2SIDE25.SettheInterfaceModelsoptiontoRotationalPeriodicity6.UnderAxisDefinition,sele
ctGlobalZ7.SetMeshConnectionOptionto1:18.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS
5:CavitatingCentrifugalPumpWS5-9April28,2009Inventory#002599WallBoundaryConditions1.InsertaboundaryconditionnamedStationary2.SetittobeaWa
ll,usingtheSTATIONARYlocation3.OntheBoundaryDetailstab,enableaWallVelocityandsetittoCounterRotatingWall4.ClickOK5.IntheOutlineTree,r
ight-clickontheDefaultDomainDefaultboundaryandrenameittoMoving–ThedefaultbehaviorfortheMovingboundaryconditionistomovewiththerotatingdomain,s
othereisnothingthatneedstobesetANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifuga
lPumpWS5-10April28,2009Inventory#002599Initialization1.Clicktoinitializethesolution2.OntheFluidSettingsform,setWaterLiquidVo
lumeFractiontoAutomaticwithValue,andsettheVolumeFractionto13.SetWaterVapourVolumeFractiontoAutomaticwi
thValue,andsettheVolumeFractionto04.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifuga
lPumpWS5-11April28,2009Inventory#002599SolverControl1.DoubleclickSolverControlintheOutlinetree2.SetTimescaleControltoPhysicaltimescaleA
commonlyusedtimescaleinturbomachineryis1/omega,whereomegaistherotationrateinradianspersecond.Youcanuseanexpressiontodetermineatimestepfro
mthis.Inthiscase,2/omegawillbeusedtoachievefasterconvergence.3.EnterthefollowingexpressioninthePhysicalTimesc
alebox:1/(pi*2160[min^-1])4.SetResidualTargetto1e-55.OntheAdvancedOptionstab,turnonMultiphaseControl,thenturnonVolumeFractionCouplingandse
ttheOptiontoCoupled6.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5
-12April28,2009Inventory#002599OutputControl1.DoubleClickonOutputControlintheOutlinetree2.OntheMonitortab,turnonMon
itorOptions3.UnderMonitorPointsandExpressions,createanewobjectandcallitInletPTotalAbs4.SetOptiontoExpression5.Spec
ifythefollowingexpression:massFlowAve(TotalPressureinStnFrame)@Inlet6.CreateanewobjectcalledInletPStatic,andsetOptiontoExpression7.Specifythefollo
wingexpression:areaAve(Pressure)@Inlet8.ClickOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5
:CavitatingCentrifugalPumpWS5-13April28,2009Inventory#002599Solver1.CloseCFX-PreandswitchtotheWorkbe
nchProjectwindow2.Savetheproject3.NowdoubleclickonSolutionintheProjectSchematictostarttheSolverManager4.WhentheSolverManage
ropens,clickStartRun5.Whenthesolutionhascompleted,closetheSolverManagerandreturntotheProjectwindow6.Savethe
projectANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-14
April28,2009Inventory#002599Post-processing1.ViewtheresultsinCFD-PostbydoubleclickingResultsintheProjectSchematic2.InsertaContourbyclicking3.
FortheLocation,click,expandRegionsandthenselectBLADE4.SetVariabletoAbsolutePressurefromtheextendedlist5.Set
RangetoGlobal6.OntheRendertabswitchoffLightingandShowcontourLines7.ClickApplyANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsres
erved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-15April28,2009Inventory#002599Post-processing9.InsertanotherContourontheHUBloca
tion,usingthevariableAbsolutePressurecolouredbyLocalRange.TurnoffLightingandShowContourLines.10.InsertanotherContourontheSHROUDlo
cation,usingthevariableAbsolutePressurecolouredbyLocalRange.TurnoffLightingandShowContourLines.Themin
imumpressureisabovetheSaturationPressureof2650PaforWaterhere.Inthenextstep,theoutletpressurewillbereducedenoughtoinitiateCavitation.ANSYS,Inc.Pro
prietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-16April28,2009Inventory#002599AddinganotherAnalysis
1.CloseCFD-PostandreturntotheProjectSchematic2.ClickthearrownexttotheAcellandselectDuplicate–AnewCFX
projectiscreatedasacopyofthefirst3.ChangethenameofthenewSimulationtoCavitation4.UsethearrownexttotheAcelltoRenameittoNoCavitation5.Savet
heProject6.Double-clickSetupfortheCavitationsimulationtoopenCFX-PreANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopS
upplementWS5:CavitatingCentrifugalPumpWS5-17April28,2009Inventory#002599PhysicsModifications1.EdittheDefault
Domain2.OntheFluidPairModelstabsetMassTransfertoCavitation3.SetOptiontoRayleighPlesset4.TurnonSaturationPressure5.Set
aSaturationPressureof2650[Pa]6.ClickOK7.EdittheOutletBoundaryCondition8.OntheBoundaryDetailstab,settheRelativePressureto300,000
[Pa]9.ClickOKMostcavitationsolutionsshouldbeperformedbyturningcavitationonandthensuccessivelyloweringthesystem
pressureoverseveralrunstomoregraduallyinducecavitation.Tospeedupthisworkshop,asuddenchangeinpressureisintroduced.Notethatthisapproac
hmaynotbesuitableformodellingsomeindustrialcases.ANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupple
mentWS5:CavitatingCentrifugalPumpWS5-18April28,2009Inventory#002599PhysicsModifications1.EditSolverControl2
.SettheMax.Iterationsto1503.SettheResidualTargetto1e-44.ClickOK5.CloseCFX-Preandsavetheproject6.IntheProjectSchematic,dragcellA
3ontocellB3–Thenon-cavitatingsolutionwillbeusedastheinitialguessforthecavitatingsolution7.Double-clickSolutionfortheCavitationsystem–In
theSolverManagernotethattheinitialconditionshavebeenprovidedfromtheprojectschematic8.ClickStartRunANSYS,Inc.Proprietary©2009AN
SYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-19April28,2009Inventory#002599CavitationSolut
ionThereisasignificantspikeinresiduals,inpartduetotheoutletpressuredifference,butalsoduetothefactthattheabsolutepressureislowenought
oinducecavitation.1.Whentheruncompletes,closetheSolverManagerandreturntotheProjectSchematic2.Savetheproject3.Double-clickResultsfortheCavitationproj
ecttoopenCFD-PostANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-20April28,2
009Inventory#002599Post-processing1.Ifitisnotenabled,turnonvisibilityfortheWireframeandturnoffvisibilityforanyUserLocationsandPlots2.CreateanXYP
laneatZ=0.01[m]3.ColouritbyAbsolutePressure(thevariableisavailableintheExtendedListbyclicking).UseaGlobalRange–Theminimumabsolutepressureisequiva
lenttotheSaturationPressurespecifiedearlier,whichisastronghintthatsomecavitationhasoccurred4.Changeth
eColourVariabletoWaterVapour.VolumeFraction5.ChangetheColourMaptoBluetoWhiteANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreser
ved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-21April28,2009Inventory#002599Post-processing1.TurnoffvisibilityforPlane12.CreateaVolumeusingt
heIsovolumemethod3.SettheVariabletoWaterVapour.VolumeFraction4.SetModetoAboveValue,andenteravalueof0.55.Toview360degree
softhemodel,double-clickDefaultTransform6.UncheckInstancingInfofromDomain7.Set#ofcopiesto58.Set#ofPassagesto59.Clic
kOKANSYS,Inc.Proprietary©2009ANSYS,Inc.Allrightsreserved.WorkshopSupplementWS5:CavitatingCentrifugalPumpWS5-22April28,2009Inventory#002599Po
st-processingThemainareaofcavitationexistsbetweenthesuctionsideofthebladeandtheshroudinthisgeometry.Aseco
ndaryareaofcavitationisjustbehindtheleadingedgeofthebladeonthepressuresideFurtherstepstotry:1.CalculatetorqueontheBLAD
Eusingthefunctioncalculator(hint,usetheextendedregionlisttofindtheBLADE,anduseGlobalZaxis)2.PlotvelocityVectorsonPlane1,usingthevariableWaterLiqui
d.VelocityinStn.Frame3.Calculatethemassflowthroughthepump(hint:usethefunctioncalculatortoevaluatemassFlowattheO
utletregion)4.Usingasimilarmethodtostep2,calculatethedropinTotalPressurefromInlettoOutlet5.PlotStreamlines,startingfromtheInletloc
ation