中考数学二轮压轴培优专题 二次函数与平行四边形存在性问题(原卷版)

DOC
  • 阅读 14 次
  • 下载 0 次
  • 页数 10 页
  • 大小 146.000 KB
  • 2023-03-17 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档5.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
中考数学二轮压轴培优专题 二次函数与平行四边形存在性问题(原卷版)
可在后台配置第一页与第二页中间广告代码
中考数学二轮压轴培优专题 二次函数与平行四边形存在性问题(原卷版)
可在后台配置第二页与第三页中间广告代码
中考数学二轮压轴培优专题 二次函数与平行四边形存在性问题(原卷版)
可在后台配置第三页与第四页中间广告代码
中考数学二轮压轴培优专题 二次函数与平行四边形存在性问题(原卷版)
中考数学二轮压轴培优专题 二次函数与平行四边形存在性问题(原卷版)
还剩1页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 10
  • 收藏
  • 违规举报
  • © 版权认领
下载文档5.00 元 加入VIP免费下载
文本内容

【文档说明】中考数学二轮压轴培优专题 二次函数与平行四边形存在性问题(原卷版).doc,共(10)页,146.000 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-235470.html

以下为本文档部分文字说明:

中考数学二轮压轴培优专题二次函数与平行四边形存在性问题1.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,交直线l于点A、C(2,﹣3).(1)求该抛物线的解析式;(2)在y轴上是否存在点D,使S△ABD=S

△ABC?若存在,请求出所有符合条件的点D的坐标;若不存在,请说明理由;(3)P是线段AC上的一个动点,过点P做PE∥y轴交抛物线于点E,求线段PE长度的最大值;(4)点F是抛物线上的动点,在x轴上是否存在点G,使得以点A,C,G,F为顶点的四边形是平行四边形?如果存在,请直

接写出所有满足条件的点G的坐标;如果不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线W:y=x2﹣2x与x轴正半轴交于点A.直线y=12x﹣2与x轴交于点B,与y轴交于点C.(1)求线段AB的长度;(2

)将抛物线W平移,使平移后的抛物线交y轴于点D,与直线BC的一个交点为P,若以A、B、D、P为顶点的四边形是以AB为边的平行四边形,求平移后的抛物线表达式.3.如图,在平面直角坐标系中,抛物线C1:y=x2+bx+c的图象经过A(﹣1,0),C

(0,﹣2)两点,将抛物线C1向右平移2个单位得到抛物线C2,平移后点A的对应点为点B.(1)求抛物线C1与C2的函数表达式;(2)若点M是抛物线C1上一动点,点N是抛物线C2上一动点,请问是否存在这样的点M、N,使得以A、B、M、N为顶点且以AB为边的四边形是面积为8的平行四边形?

若存在,求出点M、N的坐标;若不存在,请说明理由.4.如图1,抛物线y=﹣33x2﹣233x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,过点B作直线BD∥直线AC,交抛物线y于另一点D,点P为直线AC上方抛物线上一动点.(1)求线段AB的长.(2)过点P作PF∥y轴交

AC于点Q,交直线BD于点F,过点P作PE⊥AC于点E,求23PE+3PF的最大值及此时点P的坐标.(3)如图2,将抛物线y=﹣33x2﹣233x+3向右平移3个单位得到新抛物线y′,点M为新抛物线上一点,点N为原抛物线对称

轴一点,直接写出所有使得A、B、M、N为顶点的四边形是平行四边形时点N的坐标,并写出其中一个点N的坐标的求解过程.5.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣2,0)、点B(点A在点B的左侧),与y轴交于点C,且过点(2,3).(1)

求抛物线的表达式;(2)如图1,点P为直线BC上方抛物线上(不与B、C重合)一动点,过点P作PD∥y轴,交BC于D,过点P作PE∥x轴,交直线BC于E,求PE+DB的最大值及此时点P的坐标;(3)如图2,将原抛物线沿x轴向左平移1个单位得到新抛物

线y′,点M为新抛物线y′上一点,点N为原抛物线对称轴上一点,当以点A、C、M、N为顶点的四边形为平行四边形时,求点N的坐标,并写出求其中一个N点坐标的解答过程.6.如图,直线l:y=﹣12x+1与x轴、y轴分

别交于点B、C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A.(1)求该抛物线的解析式;(2)若点P在直线l下方的抛物线上,过点P作PD∥x轴交l于点D,PE∥y轴交l于点E,求PD+PE的最大值;(3)设F为直线l上的点,点P仍在直线l下方的抛物线上,以A、B、P、F

为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.7.如图,抛物线y=﹣x2+6x﹣5与x轴交于点A和点B,与y轴交于点C,经过B、C两点的直线为y=x﹣5.(1)写出相应点的坐标:A,B,C;(2)点P从A出

发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大,并求出最大值.(3)过点A作AM⊥BC于点M

,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.8.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与直线y=﹣x+3交于点B、C(0,n

).(1)求点C的坐标及抛物线的对称轴;(2)求该抛物线的表达式;(3)点P在抛物线的对称轴上,纵坐标为t.若平移BC使点B与P重合,求点C的对应点C′的坐标(用含t的代数式表示);若点Q在抛物线上,以B、C、P、Q为顶点的四边形是平行四边形,且PQ∥BC,求点P的坐标.9.在平面直角

坐标系xOy中,对于二次函数y=﹣x2+2mx﹣m2+4(m是常数),当m=1时,记二次函数的图象为C1;m≠1时,记二次函数的图象为C2.如图1,图象C1与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C;如图2,图象C2与x轴交于D、E两点(点D在点E的左

侧).(1)请直接写出点A、B、C的坐标;(2)当点O、D、E中恰有一点是其余两点组成线段的中点时,m=;(3)如图3,C2与C1交于点P,当以点A、C、D、P为顶点的四边形是平行四边形时,求m的值.10.如图,在平面直角

坐标系中,抛物线y=ax2+bx﹣3(a≠0)与y轴交于点C,与x轴交于A、B两点,且点A的坐标为(﹣1,0),连接BC,OB=2OC.(1)求抛物线的表达式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作直线BC的垂线,垂足为H,

过点P作PQ∥y轴交BC于点Q,求△PHQ周长的最大值及此时点P坐标;(3)如图2,将抛物线水平向左平移4个单位得到新抛物线y';点D是新抛物线y'上的点且横坐标为﹣3,点M为新抛物线y'上一点,点E、F为直线AC上的两个动点,请直接写出使得以点D、M、E、F为顶点的四边形是平行四边

形的点M的横坐标,并把求其中一个点M的横坐标的过程写出来.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 36502
  • 被下载 92
  • 被收藏 0
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 兔子文库
×
确认删除?