《三角形内角和定理》教学设计1-八年级上册数学沪科版

DOC
  • 阅读 29 次
  • 下载 0 次
  • 页数 6 页
  • 大小 37.445 KB
  • 2022-11-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
此文档由【小喜鸽】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《三角形内角和定理》教学设计1-八年级上册数学沪科版
可在后台配置第一页与第二页中间广告代码
《三角形内角和定理》教学设计1-八年级上册数学沪科版
可在后台配置第二页与第三页中间广告代码
《三角形内角和定理》教学设计1-八年级上册数学沪科版
可在后台配置第三页与第四页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的3 已有0人下载 下载文档0.90 元
/ 6
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
文本内容

【文档说明】《三角形内角和定理》教学设计1-八年级上册数学沪科版.docx,共(6)页,37.445 KB,由小喜鸽上传

转载请保留链接:https://www.ichengzhen.cn/view-19957.html

以下为本文档部分文字说明:

第2课时命题与证明(二)教学目标【知识与技能】1.掌握三角形内角和定理及其三个推论.2.熟悉并掌握较简单命题的证明方法及其表述.3.探索并理解三角形的内角和定理.4.会灵活地运用三角形内角和定理的几个推论解决实际问题.【过程与方法】1.经历探索并证明三角形内角和

定理的过程.2.让学生在思考与探索的过程中了解三角形内角和定理的几个推论.【情感、态度和价值观】1.通过三角形内角和定理的证明,让学生体会到数学的严谨性和推理的用途.2.通过让学生积极思考、踊跃发言,使他们养成良好的学习习惯.3.通过生动的教学活动,发展学生

的合情推理能力和表达能力,提高学生学习和探索数学的兴趣.重点难点【重点】三角形内角和定理的证明,三角形内角和定理及其推理.【难点】三角形内角和定理的证明.教学过程一、创设情境,导入新知师:在前面我们学习了三角形的内角和定理,你还记得它的内容吗?学生回答.师:我们用什么方法证明过这个命题?生:用折叠

、剪拼和度量的方法.师:很好!在上节课我们学习了定理的概念,大家还记得吗?生:记得.它们的正确性已经过推理得到证实,并被选定作为判定其他命题真假的依据,这样的真命题叫做定理.师:对.三角形的内角和定理是一个定理,它能够被证实,上节课我们还学习

了简单命题的证明,现在我们来证明这个定理.二、共同探究,获取新知教师多媒体出示:【例1】证明三角形内角和定理:三角形的三个内角和等于180°.师:在证明命题时,要分清命题的条件和结论,如果问题与图形有关,首先,根据条件画出图形,并在图形上标出有关字母与符号;

再结合图形,写出已知、求证.这个命题的条件和结论分别是什么?生:条件是一个三角形,结论是它的内角和等于180°.师:这个命题与图形有关吗?生:有关.师:那我们要画出什么图形?生:一个三角形.教师在黑板上画出一个三角形.师:题目中没有已知、求

证,我们自己要写出来.已知就是条件,求证的就是要证的结论.应该怎么写?生:已知:△ABC,如图所示.求证:∠A+∠B+∠C=180°.教师板书.师:以前我们通过剪拼将三角形的三个内角拼成了一个平角,这不是证明,但它却给我们

以启发,现在我们通过作图来实现这种转化,给出证明.教师边操作边讲解:在剪拼中我们可以把∠B剪下,放在这个位置,在证明中我们可以作出一个角与∠B相等,来代替这种操作.并且为了证明的需要,在原来图形上添画的线,这种线叫做辅助线.同学们看,应该怎样添画辅助线来帮助我们证明这个问题?生:延长BC到D,以

点C为顶点、CD为一边作∠2=∠B.教师作图:师:对.如果再知道什么条件就能得到结论了?学生讨论后回答.生:因为∠1+∠2+∠ACB是一个平角,等于180°,如果∠A=∠1,那么就有∠A+∠B+∠C=∠1+∠2+∠A

CB=180°,这样就证出了结论.师:对.现在我们看怎样证∠A=∠1?学生交流讨论.教师提示:∠A和∠1是什么角?生:内错角.师:怎么证两个内错角相等?生:两直线平行,内错角相等.师:在题中要证哪两条直线平行?怎么证它们平行?生:证明CE∥BA,因

为∠2=∠B,由同位角相等,两直线平行,就可以证出CE∥BA了.师:很好!我们现在来把这个推导过程具体写一下.要注意,我们刚才是分析,可以由结论推条件,但在书写过程中,要先写条件,再写结论,这个顺序要理清.学生口述,教师板书.师:现在大家想一想,如

果一个三角形中一个角是90°,根据三角形内角和定理,另外两个角的和会是多少?生:90°.师:对.两个角的和是90°,我们可以称它们之间是什么关系?生:互余.师:对.由此我们得到三角形内角和定理的第一个推论.

教师板书:推论1直角三角形的两锐角互余.三、边讲边练师:三角形内角和定理的证明有多种方法,课本练习中给出了另外两种证法.大家能不能说出第一题的思路?生:过点A作DE∥BC后,由两直线平行,内错角相等来建立两个相等关系,再由平角的定义就可证

出了.师:你们已经理清了思路,现在请大家将书上的证明过程补充完整.学生完成练习第1题.师:第二个练习的思路大家清楚吗?学生交流讨论后回答.生:过三角形一边上一点作两条平行线,然后根据平行线的性质使△AB

C的三个内角与组成平角的三个角分别相等,再由平角的定义证明它们的和是180°.师:很好!请同学们把证明过程补充完整.学生补充练习第2题的证明,教师巡视指导,然后集体订正.四、层层推进,深化理解1、提出问题:三角形内角和为何是180°2、分析问题:把三个角转化到平角或同旁内角3、解决问题:做辅助线

转化后证得内角和4、成果运用:用三角形内角和解决其他问题五、课堂小结师:我们今天学习了哪些内容?你有什么收获?学生发言,教师点评.教学反思本节课我通过让学生自己思考设计证明思路,来培养学生积极思考的探索精神.在

证明三角形内角和定理的第一种证法中,我带领他们回顾了以前证明此定理的操作方法,并说明这两种方法的思想是一致的.一方面可以让他们学会把实际问题用数学形式表示出来,另一方面培养了他们建立相关事物之间的联系的意识,促进知识的迁移.在证明三角形内角和定理的练习中

,我让他们先理清思路,再做题,不但可以借鉴别人的思路,而且能做到整体把握,理清脉络.

小喜鸽
小喜鸽
好文档,与你分享
  • 文档 161806
  • 被下载 28770
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?